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LETTER TO THE EDITOR 

The positive muon relaxation rate at low temperature in 
a Heisenberg ferromagnet 

A Yaouanc and P Dalmas de Rt5otiert 
Centre d’Etudes Nucleaires, DRFMC/SPSMS/LIH, 85X, F-38041 Grenohle Cedex, 
France 

Received 29 May 1991 

Abstract. We show that lhe positive muon spin depolarization should be controlled at low 
temperature by a magnon Raman scattering for a Heisenberg ferromagnet if the degree of 
symmetry at the muon site is not too high. The data recently reported for the intermetallic 
ferromagnet GdNi5 support our conclusion. 

Recentlyit hasbeenshown byYaouanceraf(l990) that the positivemuonspin relaxation 
(~sR) method can be used to study the electronic spin excitations of rare-earth inter- 
metallic magnets at low temperature. In particular these authors have noted that in the 
ordered state of the ferromagnet GdNi5 (its Curie temperature is T, = 31.45 (5) K) the 
longitudinal ~ S R  depolarization function, P>(i), can be described by an exponential 
function, Pz(r) = exp( -Ad). In our notation we take the z axis parallel to the mean value 
of the localmagnetic field at the muon sitein the ordered magneticstate. The longitudinal 
depolarization is due to the muon spin flip along this field direction (Schenck 1985). At 
low temperature, 13 K < T < 25 K, Iz follows a temperature power law, Az = qTz, with 
q = 0.191(4) x lO~’MH~K~~(DalmasdeRtotier1990,DalmasdeRt5otiereraf1991a, 
h). Because of the restricted temperature range of the power law fit, the value of the 
exponent was fixed. In this letter we show that this result can be explained if we suppose 
that the ~ S R  is due to a Raman scattering of the magnons against the muon spin. 

Below we first express I, in terms of the correlation functions of the total angular 
momentum of the rare-earth ions. We then compute these functions in the linearized 
spin-wave approximation for a Heisenberg magnet with a magnetic anisotropy repre- 
sented by an effective magnetic field. Finally we use the result of the computation to 
discuss the data obtained on GdNi, at low temperature. 

When the fluctuations of the total angular momentum of the rare-earth ions are 
sufficiently fast, it can be shown (McMullen and Zaremba 1978, Dalmas de Rtotier and 
Yaouanc 1991) that 

P A 9  = exp(-~,(f)) (1) 
with 

t Current address: Hahn-Meitner-Institut Berlin, D-TOW Berlin 39, Federal Republic of Germany 

0953-89&1/91/326195 + 07 $03.50 @ 1991 IOP Publishing Ltd 6195 



6196 Letter to the Editor 

TJJr(f) = $ l ' d T ( f -  t) (exp(io,T)@+-(T) + eXp(-i&l,T)@-+(T)) 
0 

or 

Here 

@.&) = 4((6B,(r) + 6B,(a))) 

is the symmetrized correlation function of the fluctuations of the CY- and P-components 
of the local magnetic field at the muon site. By definition we have 6B, = PB, f PB, and 
B, = (B,) + SB,. { A }  stands for the thermal average of A .  The time evolution of the 
fluctuations is governed by the Heisenberg equation 

SB,(r) = exp(i%e,t/h) 6 B .  exp(-i%e,t/h) 

where X ,  is the Hamiltonian that describes the magnetic properties of the magnet. 
U, = h v ,  = ypB where yp is the muon gyromagnetic ratio, y, = 8.516 x lo8 rad s-I 
T-'. We have given qi,(t) with the {+, -, z} and { x ,  y, z }  coordinates because these two 
forms of v,(t) can both be useful, depending on what one is looking for. The rare-earth 
magnetic moments fluctuate with a characteristic time of =10-'2s. Therefore, as the 
experimental time window is s, we can neglect T in the f - z factor of 
(2) and (3) and extend the integrals to infinity. In practice we have Y, < 500 MHz 
in intermetallics (Schenck 1985). This means that O,T < 1. Taking into account the 
experimental values just mentioned, the fact that QW0(r) = @&z) when a = [ x , y ,  z}, 
and equations (2) and (3), it is a good approximation to write q,(f) = Art with 

s < t < 

or 

Re(A) stands for the real part of A .  As expected, equation (5) indicates that the 
depolarization is produced by the fluctuations of the transverse components of the local 
magnetic field at the muon site. Within the approximations mentioned above (basically 
the typical rare-earth fluctuation time must be sufficiently small) we deduce that the 
longitudinal depolarization function is an exponential function with a damping rate Az. 
If we identifyAzwith l /T , ,  where T ,  is the muonspin-lattice relaxation time, the above 
PsRexpressions (equations(4) and (5)) areequivalent to the nuclear magnetic resonance 
(NMR) formula given by Moriya (1962). We notice that it is possible to give an expression 
for the transverse depolarization function in terms of correlation functions map(t) as we 
have just done for the longitudinal function. This expression is the same as that found 
for NMR only if the mean value of the local magnetic field at the muon site is sufficiently 
large (Dalmas de Reotier 1990, Dalmas de Reotier and Yaouanc 1991). 
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In order to compute Az we need to give an expression for the magnetic field at the 
muon site and to specify the magnetic part of the Hamiltonian of the magnet. 

The muon spin interacts with the polarized (in this paper we consider the case of an 
intermetallic ferromagnet with T < r,) conduction electrons through the Fermi contact 
interaction and with the total angular momentumof each rare-earth ion, J i  (Jt = S ;  -k Li 
where Si and Li are respectively the spin and the orbital momentum vectors of rare-earth 
ion i), through the classical dipolar interaction. In a good approximation the first 
interaction can be expressed in termsof an effective isotropic and short-range interaction 
between the muon spin and J;  for each ion. Therefore we write 

where the geometrical factors are Ai = 30;  cos 0, sin Bi, E, = $Di sin2Bi and Ci = 
Di(l - 3 coszBj)/Z with Di = (p0/4n) @&;/rJ). ri, Bi and qi are the distance and polar 
and azimuthal angles for ion i relative to the muon. The z axis is directed, as already 
mentioned, along the mean value of the magnetic field at the muon site. g; is the Land6 
factor of ion i. The constant F, is the contact magnetic field at T = 0 K produced by the 
conduction electrons polarized by Ji. The sum is over the N rare-earth ions of the lattice. 
We have 6B- = (SB,)* .  

Unlike in NMR, for which the contact field is usually much larger than the dipolar 
field due to the localized electronic dipole moments, in ~ S R  spectroscopy these two 
magnetic fields are of about the same order of magnitude. The dipolar field even seems 
to be a little stronger than the contact field (Hartmann er a1 1986). In any case, it is not 
negligible. This has an important consequence for the muon spin relaxation mechanism 
(first mentioned by Dalmas de Rdotier 1990). This can be understood qualitatively as 
follows. The muon spin can be depolarized if the magnet in which the muon is implanted 
is able to flip its spin. The fluctuating part of the coupling Hamiltonian between the 
muon spin and the electronic spins can be written 

SX, = -ty&J, 6B, + $(U+ S E -  + U -  6 B + ) ]  (7) 

where u, is the a-projection of the Pauli operator of the muon. Only the last two terms 
of this Hamiltonian can induce a muon spin flip. SE,  (SB-)  is a linear combination of 
SJ, , , ,  SJ; , -  and Mi,, for each rare-earth ion i (see (6)). We now consider the first two 
types of terms of this combination. Since a relaxing muon spin flips an electronic spin (a 
magnon is created or annihilated), the z component of spin angular momentum of the 
ensemble muon system is conserved. However, as already observed for NMR (Mitchell 
1957, Beeman and Pincus 1968), fulfilment of the energy-conservation requirement is 
more difficult to ensure. The energy of the created (or annihilated) magnon must be 
equal to hw,,. The minimum energy of a magnon is equal to the gap energy of the magnon 
dispersion curve which is usually much larger than hw, (2 peV if up = 500 MHz). Thus 
the first two types of terms of the linear combination, involving a single magnon, cannot 
ingeneral induce a muon spin flip. On the other hand, a two-magnon, or Raman, process 
can be quite effective as regards inducing the muon spin to flip. As noted previously for 
NMR (Mitchell 1957, Beeman and Pmcus 1968), this two-step process does not present 
problems as regards energy conservation because the only requirement is that the 
energies of the annihilated and created magnons must be equal (we neglect hw,). In 
addition there is no problem with the conservation of the z component of the angular 
momentum because this conservation is not required. In summary, for the computation 
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of Az (in lowest order) we have only to use the following part of the fluctuating magnetic 
field at the muon site: 

Notice that 6 E ;  involves only the classical dipolar interaction. The contact term, which 
we suppose to be isotropic, does not participate. This explains why in NMR the nuclear 
relaxation due to a magnon Raman process is usually rarely of significance (Beeman and 
Pincus (1968) and references therein). In order to compute A x  we now specify the 
Hamiltonian of the magnet. 

We suppose that the magnetic properties of a rare-earth intermetallic compound 
can be described by the sum of a Heisenberg interaction between the total angular 
momentum of the rare-earth ionsand a Zeeman term that roughly simulates the magnetic 
anisotropy. For simplicity we suppose we are dealing with a Bravais lattice. Thus the 
Land6 factor is the same for all the rare-earth ions,g, = g. Therefore we write 

where Eii is the exchange integral between ions i and j, and B. is the magnetic field that 
simulates the magnetic anisotropy. Following Holstein and Primakoff (1940) we express 
Mi, ,  in terms of boson operators a t  and a; (they obey the Bose commutation rule 
[ a i ,  a:]  = N 6x.q) :  

(10) 
1 

= - --E exp(i(k - q )  . (ri - ro))a;u;.  
N2 k.9 

ri (a) is the vector that links the muon localization site to point i (the origin) of the 
Bravais lattice. The sum over k (q)  is over the first Brillouin zone. With the Holstein- 
Primakoff transformation, Xm can be directly diagonalized if we only retain the term 
bilinear in the boson operators. The result is 

We have made the definition 

In (11) we have dropped constant terms irrelvant for our purposes. Notice that in the 
small-k approximation (long-wave approximation) we can write for cubic lattices wk = 
Dk2 + gpBB,/f i  where D is the spin-wave stiffness constant. For a simple cubic lattice 
and with only nearest-neighbour exchange interactions we have D = UEa'/h where U 
is the lattice constant. The stiffness constant can still be roughly estimated from this 
formula for any crystal structure if a is taken as the distance between the rare-earth ions. 
As expected gpBBa is the value of the gap of the magnon dispersion curve. Using (8), 
(IO) and (11) we derive 

cos 8,  sin ei exp(iqi) 
exp(i(k - q) . T i )  

1 
W ( r ) = - 3 8 p B ( E ) T z F  r: 

x exp(ia(ok - wp))aza; 
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Havingthe6B;(?) and 6BI. expressions(6BI = (6B;(r  = O))*),itisnowpossible 
to compute the longitudinal damping rate (in lowest order) using (4). We deduce that 

= ~ ~ ( ( Y , ~ P B ) ~ ( W D / ~ ~ ) ~ P  

with 

x cos(k - q )  . (ri - r l ) .  (13) 

To proceed further we neglect the (geometrical) cosine term in the sum over k and q. 
This approximation should not be unreasonable because, as mentioned below, the sum 
is dominated by the centre of the Brillouin zone. As the sums over the direct lattice and 
Brillouin zone are no longer related we obtain the simplified result 

U is the volume of the unit cell. The geometrical factor G which depends on the lattice 
structure and the muon localization site is given by 

U2 
G = E r!r! (cos e; COS ei sin e; sin ej cos(qi - qj)).  (15) 

'.I I I 

Notice that this factor can be zero due to symmetry. For example, this is the case if the 
rare-earth ions are on a simple cubic lattice, the L axis being along the [l, 0.01 direction 
and the muon located at the site (4.4, 4) (the sum is limited to nearest neighbours). A 
study of the G-factor indicates that the double sum may not be convergent when ri and 
ri are very different. This may be related to the neglect of the cosine term in the (k, q) 
sum. A detailed mathematical study is under way. An approximate analytical formula 
can be derived for the sum over k and q of (14). Replacing the sums by integrals we 
obtain 

" ( 4 ~ ) '  ]gkmm Iok"" k2 dk q2 dq 

V ,  the volume of the sample, is equal to Nu. In (16) we have neglected any anisotropy 
in the Brillouin zone. The integrand is small for large k. Therefore we may use the small- 
k approximation for the magnon dispersion relation and replace the upper limit of the 
integrals by infinity. Then (16) becomes 

with xg = gpBB,/kBT. 
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In the limit g p B E , 4  kBT the integration can be performed analytically. We then 
obtain 

The T2 In(T) behaviour has already been predicted for an anisotropic contact inter- 
action, which can happen in NMR (Mitchell 1957, Beeman and Pincus 1968). The pre- 
factor is new. The derivation of (18) supposes that the contact interaction is isotropic. 
Following the method proposed here, it is easy to obtain a general expression for A, that 
includes the effect of an anisotropic contact interaction. 

We are going to discuss the possibility of understanding the GdNiS data in terms of 
a Raman scattering. Equation (18) has been derived on the hypothesis that k-space is 
isotropic. Although this is not the case of GdNi5, the conclusion of the present analysis 
should not be influenced by this simplification. Equation (18) depends on three par- 
ameters: the magnon stiffnessconstant, the anisotropy energygp,B,and the geometrical 
factor G. GdNi5 has a hexagonal crystal structure isotypical with that of CaCu5. The 
Gd3’ ions are located on a hexagonal Bravais lattice. Each Gd3+ ion has two nearest- 
neighbour Gd3+ ions at 3.97 8, and six second-nearest-neighbour Gd3+ ions at 4.90 A. 
Thus, for simplicity, we su pose that each ion has eight nearest-neighbour ions at the 

formula 

L is the number of nearest-neighbour ions ( z  = 8). From this formula we deduce E = 
0.374 K. This leads to a stiffness constant D = 7.48 X lo-* s-l m2. As Gd3’ has an 
isotropic 4f shell, the magnetic anisotropy is small. This can be due to the dipolar 
interaction between the electronic magnetic moments. In any case the effective aniso- 
tropic magnetic field should be small. If we take E ,  = 0.1 T we have In(kBT/gpBE.) = 
4.57 and 5.22 at 13 K and 25 K respectively. Therefore the temperature dependence 
introduced by the logarithmic factor is weak. As the GdNi, data are not precise enough 
to allow us to detect such a small effect, we will take for this factor the average of its 
valuesat 13 Kand25 K.ThuswesetIn(k,T/gp,B,) = 4.89.Noticethat &can beslightly 
changed without having a strong effect on the value of the logarithmic factor. The G- 
factor can be computed from a lattice sum using (15) if the muon localization site and 
the direction of the mean value of the magnetic field at that site are known. As the 
localization site is unknown for GdNi, (Dalmasde Reotier efall990) we have computed 
C for the two most probable sites (the hydrogen sizes; site 1 and 4 of table 1 of Dalmas 
de Reotier et al1990). We have taken the z direction parallel to the mean magnetic field 
produced by the Gds+ dipole moments. Thus, for simplicity, we have neglected the 
contribution of the contact interaction to the mean value of the magnetic field at the 
muon site. For site 1 we find G = 12.4, whereas for site 4 the G-value is about 1 (the 
lattice sum does not seem to converge smoothly). These values should be considered as 
preliminary because, for example, we do not even know the direction of the magnetic 
field at the muon site. In addition, the lattice sum of (15) seems to have convergency 
problems. For an exact evaluation, equation (13) has to be used. To proceed further we 
take for G the value computed for site 1, C = 12.4. Using the parameters just estimated 
we can compute Ax.  We obtain A2 = qp with q = 1.13 X 10-4MHz KM2 whereas the 
experiment gives q = 0.191(4) x lo-’ MHz K-’. The theoretical estimate is too small 
by a factor of about 1.69. Considering the facts that the exchange integral has been 
estimated from the simple molecular field formula and that the value given for the 

averagedistancen = 4.67 L Weestimate theexchangeintegral from themolecularfield 

E = [3/J(J + l)] kBTc/2z. (19) 
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geometrical factor is preliminary, we estimate that the present theory describes the 
experimental result. Although more work is needed, it is clear, at any rate, that Raman 
scattering can explain the GdNi, data at low temperature. 

Before attempting a more detailed comparison between experiment and theory, 
more work is needed. The muon localization site in GdNi, should be determined as 
well as the direction of the mean value of the magnetic field. Experiments should he 
performed on other intermetallic ferromagnets. The theory should be completed by 
introducing the effect of the dipolar interaction between the rare-earth ions and taking 
the virtual magnon processes into account (Beeman and Pincus 1968). The sums in (13) 
should be studied in detail. In addition, as the compounds of interest are metals, 
the effect of the conduction electrons on the magnon stiffness constant should be 
investigated. 

In this letter we have considered a ferromagnet and shown that the muon spin 
relaxation by a Raman process is of importance except when the degree of symmetry at 
the muon site is too high. The case of antiferromagnetic compounds should be studied. 
Preliminary data on the antiferromagnets GdCul (Gubbens et a1 1991) and NdRh,Si2 
(Dalmas de Rkotier 1990) indicate that it is possible in general to measure at low 
temperature the longitudinal muon relaxation rate. Notice that when the intermetallic 
contains ions such as uranium, which can present an itinerant magnetic character, the 
temperature dependence of I, cannot be explained within the framework given here 
(Dalmas de Rtotier eta1 1991a). 

After this letter was written we recieved a preprint from Lovesey eral(l991) where 
Raman-type relaxation processes are considered for EuO. These authors take the 
dipolar interaction between the rare-earth ions explicitly into account. As expected, I, 
is predicted to have an almost quadratic temperature dependence. To the best of our 
knowledge, no psR data exist for EuO. 

We thanks W Lovesey for sending us a preprint of the work of Lovesey etal. One of us 
(Dalmas de Rtotier) is supported by the Alexander von Humholdt Stiftung. 
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